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1. INTRODUCTION

Advances in the synthesis of functionalized porous materials,
either microporous zeolites (aluminosilicates) or mesoporous
silica nanoparticles (MSNs), have provided significant opportu-
nities for the development of new catalytic systems.1�4 Pore
diameters for zeolites are in the range of 1�2 nm1 and those for
MSNs range from 2 to 10 nm.2 We note that the effective
diameter for pores inMSNs can be even smaller than the nominal
∼2 nm minimum after functionalization with catalytic sites. Our
focus is on the regime of small pore diameters no larger than
∼2 nm. Clearly, small pore diameters provide a mechanism for
selectivity. However, it is also the case that diffusive transport
within such pores can be severely restricted. In the extreme case,
transport within one-dimensional (1D) linear pores corresponds to
so-called single-file diffusion where molecules cannot pass each
other. Naturally, there have been extensive studies of transport in
single-file systems, often emphasizing the anomalous nature of
tracer- or self-diffusion.5,6 This anomaly is reflected in a sublinear
increase with time in the mean-square displacement of a specific
“tagged” particle.7,8 Such behavior contrasts the linear increase for
conventional diffusion.However, of additional interest for catalysis,
and the focus of this contribution, is the interplay between this type
of anomalous transport and the catalytic reaction kinetics.

The above examples constitute a special class from among
general reaction-diffusion processes, which are traditionally des-
cribed by mean-field reaction-diffusion equations (RDE).9,10

These RDE include a conventional mean-field treatment of
chemical kinetics which ignores spatial correlations in the reactant

distribution. Such RDE typically also include a simplified treat-
ment of chemical diffusion with constant Fickian diffusion
coefficients and independent transport of different species. Note
that chemical or collective diffusion describes the diffusion flux
induced by concentration gradients11 and is distinct from the
tracer diffusionmentioned above.We remark that heterogeneous
catalytic reactions on two-dimensional (2D) surfaces have been
effectively treated by mean-field RDE.12 However, it is well
recognized that interactions between chemisorbed reactants
can produce islanding or ordering, and thus non-mean-field
kinetics.13 The complexities of diffusion in mixed reactant adlayers
are less appreciated.14 Nonetheless, such complications can be
appropriately treated by realistic atomistic-level modeling.15,16

In contrast, for 1D nanoporous reaction-diffusion systems,
there is a broad appreciation of complexities of diffusion as well as
analysis of certain aspects of chemical (as well as tracer) diffu-
sion.6,17,18 There has also been some development of approx-
imate RDE for simple catalytic reaction models.19�21 One might
anticipate that the restricted nature of transport in these systems
(as well as interactions between reactants) could induce spatial
correlations in the reactant distributions, and thus deviations
from mean-field reaction kinetics. The nature of the reaction
kinetics, and also the interplay with chemical diffusion, have been
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explored in some simulation studies.19�25 However, such ana-
lyses are limited and the current understanding is far from
complete. Thus, the goal of this study is to provide a perspective
on recent developments and also to contribute new results in the
analysis of catalytic conversion and polymerization reactions in
nanoporous single-file systems.

Conversion reactions (AfB) in 1D nanoporous systems with
single-file diffusion have been the subject of the most extensive
analyses.19�26 It should be emphasized that for systems with
inhibited passing or a strict single-file constraint, the key factor
impacting reactivity is the extent to which reactants and products
A and B can pass each other. The influence on reactivity of the
extent of passing of reactants A with each other, and products B
with each other, is relatively minor. One general expectation
emerging already from earlier studies of a generic AfB conver-
sion model with single-file diffusion24 is that reactivity is localized
near the pore openings. Various single-file conversion reactions
have been considered in zeolites, including a detailed study of Pd-
catalyzed neopentane conversion.25 Our motivation here comes
from studies of various conversion reactions, such as Beckman
rearrangement,27,28 in functionalized MSNs with narrow pores.
In some cases, the effective diameter of the pores is reduced
below 2 nm by functionalization with the catalytic group. Then,
larger reactant and product species cannot pass, at least not
without difficulty because of the need for orientational alignment
with each other and with the pore axis. We are also interested in
more general catalytic transformations involving two reactants
(A þ A0fB) subject to inhibited passing or a strict single-file
constraint for A and B. These processes can be analyzed using the
simpler AfB conversion models provided that A0 is sufficiently
small so that it can readily pass both A and B, and provided that A0
is present in excess. Examples of this type might be the
nucleophilic catalytic reactions in MSNs functionalized with
the bulky dialkylaminopyridine (DMAP-MSN),29 and the
Diels�Alder reaction in urea or thiourea-functionalizedMSNs.30

As discussed further below, of particular interest for our model-
ing of the effects of anomalous transport is a study of the
conversion of p-nitrobenzaldehyde (PNB) to an aldol compound
in amine-functionalized MSNs where the dependence of reactiv-
ity on effective pore diameter has been quantified.31

Fundamental questions for these conversion reactions still
requiring resolution include the following:

(i) How does overall reactivity depend on basic parameters
such as the intrinsic rate of reaction for reactant species in
the vicinity of a catalytic site and on species' mobility
within the pore?

(ii) How does the propensity for passing of various reactant
and product species within the pore (which depends
strongly on pore diameter) affect the overall reactivity?

(iii) How does the distribution of catalytic sites affect overall
reactivity, particularly catalytic functionalization re-
stricted to near the pore openings versus uniformly
throughout the entire pore?

(iv) To what extent can the evolution of concentration
profiles and thus reactivity be described within a tradi-
tional deterministic mean-field-type RDE picture as op-
posed to being controlled by stochastic effects (e.g.,
fluctuations in numbers of adsorbing and desorbing
species at the pore openings)?

(v) Can shortcomings of traditional RDE approaches be
overcome by refined treatments?

In this study, we consider simple AfB and sequential
AfBfC conversion reaction mechanisms, and provide new
insights and modeling strategies addressing the above issues.

Polymerization reactions have received very little attention,
particularly with regard to modeling for single-file systems.32,33

However, strong motivation for such studies derives from the use
of mesoporous materials to facilitate production and processing
of polymeric materials with desired higher-order structures, for
example, linear “molecular wires” versus more complex cross-
linked networks.4 Another motivation derives from interest in
the formation of composite nanomaterials, for example, by
encapsulating conducting polymers within mesoporous materi-
als. There have been several studies demonstrating the potential
for using MSNs to achieve these ends.34�37 Of particular focus
for our model development was a previous study which con-
sidered oxidative catalyzed formation of poly(phenylene butadi-
nylene) polymer (PPB) in Cu2þ-functionalized MCM-41
silica.34 For this PPB mechanism (A þ AnfAnþ1), previous
modeling in the regime of diffusion-limited reaction regime for
low catalyst loading indicated predominant polymer growth near
pore openings, and also anomalous non-Markovian growth
kinetics.32,33 Additional modeling is needed for the experimen-
tally relevant reaction-limited regime with high catalyst loading.

Fundamental open questions for these types of polymeriza-
tion reactions include the following:

(i) What are the basic spatiotemporal features of polymer
growth, that is, the location and distribution of dominant
growing polymers, and characteristics of the polymer
growth kinetics?

(ii) How does the above spatiotemporal picture depend on
basic parameters such as intrinsic reactivity, the variation
of oligomer mobility with length, the distribution of
catalytic sites, and so forth?

(iii) For more complex cross-coupling polymerization me-
chanisms, for example, A þ BfAB, B þ AB..fBAB..,
and so forth, does the pore quickly fill with small
oligomers which cannot react because of neighboring
ends of the same type, or can significant polymer growth
be achieved?

(iv) Can traditional Markovian rate equations describe poly-
mer growth kinetics and length distributions, or are
alternative formulations required?

In this study, we provide further analysis for the PPB
polymerization reaction mechanism (A þ AnfAnþ1) described
above. In addition, we also develop a model for the Sonagashira
cross-coupling polymerization reaction mechanism (A þ
BfAB, etc.) motivated by experiments for formation of poly-
(p-phenylene ethynylene) (PPE) polymers using Pd(II)-func-
tionalized MSNs.38 In both cases, we focus on the case of high
catalyst loading and the regime of reaction-limited polymeriza-
tion which is relevant to experimental studies. A universal
spatiotemporal picture is obtained for both mechanisms, and
we develop and apply concepts from continuous-time random
walk (CTRW) theory to address the shortcomings of traditional
chemical kinetics.

To treat the spatial aspects of these single-file reaction-
diffusion processes, previous modeling had often incorporated
the feature that both reactants and products inside the pore
reside at the sites of a discrete grid or linear lattice.19�26,32,33

Single-file diffusion is readily incorporated by a no-passing cons-
traint in the particle hopping dynamics (where multiple occupancy
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of a single site is also excluded). Adopting a discrete spatial
structure should not affect the basic aspects of model behavior, at
least for smoothly varying concentration profiles over several
lattice constants. Such lattice-gas (LG) modeling also greatly
facilitates both analytic investigation and Kinetic Monte Carlo
(KMC) simulation of the model, and thus is adopted here.

In Sec.2, we describe the conversion reaction models analyzed
in this study, together with the hierarchical form of the associated
exact master equations. In Sec.3, we present hydrodynamic RDE
formulations for continuous coarse-grained versions of the
models. Precise results from KMC simulations are compared
with predictions from various analytic formulations in Sec.4. In
Sec.5, we describe our models for catalytic polymerization for
both the PPB Aþ AnfAnþ1 and Sonagashira-type mechanisms.
In Sec.6, we characterize behavior in various reaction-rate
regimes and present associated results from KMC simulations.
Exploiting concepts from random walk theory, we provide
further insight into behavior in the partial-extrusion regime in
Sec.7. Conclusions are provided in Sec.8.

2. CONVERSION REACTIONS: MODELS AND MASTER
EQUATIONS

2A.Models. First, we describe a general class of models for the
diffusion-mediated catalytic conversion of a reactant to a product
(A f B) inside narrow pores. Reactants and products are
localized to sites of a 1D linear lattice traversing the pore, or
more generally to sites on a ladder (see Figure 1). The separation
between adjacent sites is given by the lattice constant “a”which is
selected to be comparable to the reactant and product size
(∼1 nm). The simplest scenario for diffusion is that A and B
hop to adjacent empty sites. This prescription corresponds to
single-file diffusion with a strict no-passing constraint on the 1D
linear lattice, but not on the ladder. One could allow positional
exchange of adjacent A and B on the 1D linear lattice to relax the
strict single-file constraint, noting that exchange of adjacent
particles of the same type has no effect. (Allowing longer hops
over other particles would also relax the constraint.) On the other
hand, one could impose a nearest-neighbor (NN) exclusion
constraint on the linear ladder which would enforce no-passing.
One has considerable flexibility treating diffusive dynamics! The
other mechanistic steps in the model are adsorption of external

reactant species A at terminal sites of the pore provided that these
sites are unoccupied or empty (E); conversion Af B at catalytic
sites (c) within the pore; and desorption of both the reactant, A,
and product, B, from terminal sites of the pore. The catalytic sites
may constitute all sites or various subsets of sites within the pore.
These mechanistic steps and a configuration with catalytic sites
just near the pore openings are also illustrated in Figure 1. The
total reactivity (i.e., the total production rate of B) is proportional
to the total amount of A within the catalytic regions of the pore.
Sequential conversion reactions, for example, Af BfC, could
also be considered.
2B. Hierarchical Master Equations. We first formulate our

model for a general sequential conversion reactions A f B f
Cf... (including AfB as a special case) on a linear lattice. Sites
in the pore are labeled by n = 1, 2,..., L (for pore length L), so that
the terminal sites are n = 1 and n = L. Allowing only hopping to
NN empty sites results in strict single-file diffusion, but this
constraint is relaxed if one includes exchange of NN particles.
Rates for the various processes will be denoted by Wads(A) =
Wads for adsorption of A;Wdes(K) for desorption of species K =
A, B,..;Wdiff(K) for hopping to NN empty sites for K;Wex(K|K0)
for exchange of NN K and K0; andWrx(A) for Af B conversion,
and so forth. An exact analytical description of such stochastic
Markov processes is provided by the master equations for the
evolution of probabilities of various configurations for the entire
system.39Often these are written in hierarchical form.19�23Here, we
use ÆKnæ to denote the probability or ensemble averaged concentra-
tion for species K at site n, ÆKnEnþ1æ for the probability that K is at
site n and for site n þ 1 to be empty (E), and so forth. Then, the
lowest-order equations in the hierarchy describe the evolution of the
probabilities for individual sites to be occupied by various species.
For just AfB conversion in the case where all sites are catalytic,

one has that

d A1h i=dt ¼ W ads E1h i �WdesðAÞ A1h i �W rxðAÞ A1h i � JA
1 > 2

ð1aÞ

d B1h i=dt ¼ �WdesðBÞ B1h i þW rxðAÞ A1h i � JB
1 > 2 ð1bÞ

d Anh i=dt ¼ �W rxðAÞ Anh i � JA
n > n þ 1 þ JA

n � 1 > n,

for 1 < n < L ð1cÞ

Figure 1. Schematic of the AfB conversion reaction (rxn) model with hopping only to nearest-neighbor (NN) empty sites within a pore described by
(a) a 1D linear lattice (no passing); (b) a ladder-like lattice (passing). Here, only sites near pore ends are catalytic “c”, and desorption and hopping rates
for A and B are equal; n labels sites in the direction along the pore axis.
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d Bnh i=dt ¼ þW rxðAÞ Anh i � JB
n > n þ 1 þ JB

n � 1 > n,

for 1 < n < L ð1dÞ
together with equations for the terminal site n = L similar to those
for n = 1. In these equations,

JA
n > n þ 1 ¼ Wdiff ðAÞ½ AnEnþ1h i � EnAnþ1h i�

þW exðAjBÞ½ AnBnþ1h i � BnAnþ1h i� ð2Þ
denotes the net flux of A from site n to nþ 1. The expression for
JB
n>nþ1 is similar. The total rate of production of B is given by

RBtot =Wrx(A) ∑n=c ÆAnæ, where the sum is over all catalytic sites
(i.e., over all sites in this example).
It is instructive to consider the special case whereWex(A|B) =

Wdiff(A), so that transport of A including passing of B is
completely unhindered (in some sense the opposite of a strict
single-file constraint). Then, it follows that eq 2 reduces exactly
to JA

n>nþ1 = Wdiff(A) [ÆAnæ � ÆAnþ1æ]. An analogous exact
reduction of diffusion fluxes was demonstrated by Kutner40 for a
single-species system.
The eqs 1a�1d are coupled to probabilities for various

configurations of site pairs. Equations for pair probabilities
couple to those for triples, and so forth, thus generating a
hierarchy. Pair, triplet, and so forth, probabilities are not simply
related to single-site probabilities because of spatial correlations
deriving from the reaction-diffusion process. A simple mean-field
(MF) factorization approximation, ÆKnEnþ1æ ≈ ÆKnæÆEnþ1æ, and
so forth, produces a closed set of discrete reaction-diffusion
equations (dRDE) for single-site concentrations, ÆAnæ and ÆBnæ,
noting that ÆAnæ þ ÆBnæ þ ÆEnæ =1. A higher-level pair approx-
imation retains pair quantities like ÆKnEnþ1æ, but factorizes triplet
quantities, for example, ÆKnMnþ1Nnþ2æ≈ ÆKnMnþ1æÆMnþ1Nnþ2æ/
ÆMnþ1æ, with K, M, N = A, B, or E. This generates a closed set of
equations for single-site quantities, ÆAnæ and ÆBnæ, and the pair
quantities, ÆKnMnþ1æ, with K, M = A or B.19�23 Such approxima-
tions should not be expected to accurately capture all features of
single-file diffusion. It is straightforward to generalize the exact
master equations and approximations to the case of more general
sequential conversion reactions AfBfCf...
Similar to previous studies of the Af B reaction,20�23 we will

explore this and the more general reaction AfBfC for a
parameter choice where the desorption rates and diffusion rates
are equal for all species, that is, Wdes(K) = Wdes and Wdiff(K) =
Wdiff, for K = A, B, and C. There is an important consequence of
this rate choice. Suppose one does not discriminate between
the identity of particles, but only considers whether sites are
empty, E, or filled, X = Aþ Bþ .... Then, the particle dynamics
corresponds to a pure adsorption�desorption-diffusion pro-
cess for particles X with no reaction. Thus, the single-site
concentrations, ÆXnæ, satisfy a standard discrete diffusion
equation with constant (concentration-independent) diffusion
coefficient.20,22,40,41 Since there is no reaction in the dynamics
of particles X, the steady-state corresponds to a conventional
Gibbsian grand canonical equilibrium state. Furthermore,
since there are no interactions between particles X at different
sites, they are randomly distributed in this equilibrium state
(i.e., there are no spatial correlations). The equilibrium
concentration at each site satisfies ÆXnæeq = Xeq = Wads/
(WadsþWdes).

19�22 Below, we always choose Wads þ Wdes =1
which sets the time-scale.

3. CONVERSION REACTIONS: HYDRODYNAMIC REGIME

In discrete LG reaction-diffusion systems, it is common to
consider behavior in the “hydrodynamic regime” where there is
sufficient diffusion to produce slowly varying particle concentra-
tions over several lattice constants.12,14,42 This treatment applies
tomodels where the particles are confined either to a linear lattice
or to more general ladder-like lattices.
3A. Hydrodynamic Reaction-Diffusion Equations. In the

hydrodynamic regime, behavior is described by continuum
hydrodynamic reaction-diffusion equations (hRDE) after
coarse-graining. Specifically, for linear or ladder lattices, one sets
x = na, where n is the lattice site label in the direction along the
pore. Then, species concentrations per unit length become func-
tions of a continuous variable K(x = na) ≈ a�1 ÆKnæ (leaving
t-dependence implicit). Thus, Xm = 1/a corresponds to the
maximum concentration per unit length. Below, we set a = 1.
The hRDE in our AfB conversion reaction model with all

sites catalytic for individual species concentrations, A(x) for A,
and B(x) for B (leaving implicit the t-dependence), have the form

DAðxÞ=Dt ¼ �W rxðAÞAðxÞ � DJA=Dx ð3aÞ
DBðxÞ=Dt ¼ þW rxðAÞAðxÞ � DJB=Dx ð3bÞ

The total concentration satisfies X(x) = A(x) þ B(x), and
E(x) = 1 � X(x) gives the concentration of empty sites. If sites
within the pore are catalytic only in specific regions (e.g., the
peripheral regions), then the reaction terms appear only for those
locations. Boundary conditions for eqs 3a�3b at the pore ends
reflect the adsorption�desorption dynamics.22 Description of
the diffusion fluxes, JK, for K = A and B is nontrivial for this mixed
lattice-gas, even in the absence of interactions beyond site-
exclusion. However, Onsager transport theory17,18,42 ensures
that, for example, the diffusive flux of A has the form

JA ¼ �DA, ADAðxÞ=Dx �DA, BDBðxÞ=Dx ð4Þ
where the diffusion coefficientsDA,K generally depend on species
concentrations. A similar expression applies for the flux, JB, of B.One
simple case allows exchange of A and B with Wex(A|B) =Wdiff(A),
that is, unhindered transport of A including passing of B, as discussed
in Sec.2B. Then, it follows thatDA,A = a

2Wdiff(A) andDA,B = 0, that
is, the presence of B does not interfere with the diffusion of A.
We will compare predictions of a discrete form of these RDE

with results from KMC simulation. The appropriate discretiza-
tion of the reaction kinetics is clear (e.g., from the exact master
equations),22 and that for the diffusion fluxes is mentioned
below. The above formulation naturally extends to sequential
conversion reactions, for example, AfBfC.
3B. Diffusion Fluxes for Species-Independent Hop Rates.

Here, we consider the case of noninteracting lattice-gases (with
exclusion of multiple site occupancy) with two components A
and B on linear or ladder lattices and with equal hop rates to NN
empty sites, so that Wdiff(A) = Wdiff(B) = Wdiff, and where
exchange can be operative at rateWex =Wex(A|B). Then, in the
hydrodynamic regime, one has that42�45

JA ¼ � XðxÞ�1½DXAðxÞ þ BðxÞDtrðXÞ�DAðxÞ=Dx
� XðxÞ�1AðxÞ½DX �DtrðXÞ�DBðxÞ=Dx

¼ �DX½AðxÞXðxÞ�1�DXðxÞ=Dx
�DtrðXÞXðxÞ�1½BðxÞDAðxÞ=Dx� AðxÞDBðxÞ=Dx�,

ð5Þ
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withDX = a
2Wdiff.

46 An analogous expression applies for JB.Dtr =
Dtr(X) represents the tracer diffusion coefficient for a tagged
particle within a dense single-component lattice-gas of concen-
tration X = X(x) with hop rate of Wdiff to NN empty sites, and
where all NN pairs of particles can exchange with rate Wex. For
systems with no single-file constraint, for example, due to exchange
with adjacent particles on a 1D linear lattice, or due to a ladder-
like lattice model of pore structure, Dtr = Dtr(X) is nonzero
and depends in a nontrivial way on X = X(x). It should
decrease from DX to 0 as X increases from 0 to 1. In the
special case of unhindered exchange withWex =Wdiff, one has
that Dtr(X) = DX for all X. In this case, eq 5 reduces to JA =
�DX ∂A(x)/∂x consistent with the analysis of this simple case
in Sec.3A.
Next, we describe the form of these diffusion fluxes for a linear

lattice constituting a strict single-file system for different choices of
Dtr. In the hydrodynamic limit for large systems, one has the exact
resultDtr(X) = 0. This is a consequence of the anomalous nature
of the diffusion of a tagged particle. Then, eq 5 gives the exact
hydrodynamic (h) diffusion fluxes22

JKðhÞ ¼ �DX½KðxÞ=XðxÞ�DXðxÞ=Dx, for K ¼ A or B ð6Þ
This result follows directly from eq 5 and is also intuitively clear.
The JK must sum to the total diffusion flux which satisfies
JX = �DX ∂X(x)/∂x for this noninteracting lattice-gas, and
the individual fluxes are in proportion to the local species con-
centrations.
The mean-field (MF) treatment for a single-file system sets

Dtr(X) = DX [1� X] which yields chemical diffusion fluxes with
the form

JAðMFÞ ¼ �DX½1� BðxÞ�DAðxÞ=Dx�DXAðxÞDBðxÞ=Dx
ð7Þ

and an analogous expression applies for JB(MF). This result has
been obtained previously by making simple MF-approximations
for the conductivity inOnsager’s transport theory,17,18,47 and also
from coarse-graining of a MF approximation to the discrete
hierarchical master equations.20,22,48 This MF form eq 7 can
produce artificially high diffusion fluxes relative to eq 6.
Finally, we introduce a perturbed hydrodynamic (ph) treatment

for a single-file system which is intended to account for
finite system size (i.e., finite pore length, L). We first note
that the tracer diffusion for finite 1D systems of L sites
with periodic boundary conditions satisfies Dtr = Dtr(X, L) =
X�1[1 � X]DX/(L � 1) where the concentration is restricted
to X = m/L for m particles in the system.49 For finite open
systems of L sites where transport is not limited by adsorption�
desorption at the pore ends, we use the effective form

DtrðX, LÞ � ½1� X�DX=½1þ XðL� 1Þ� ð8Þ
This choice is motivated by analogous expressions for Dtr

applied in the analysis of membrane transport,50 and by
noting that eq 8 recovers the desired results that Dtr f 0
as Xf1, and Dtr f DX as Xf0. The requirement that
transport is not adsorption�desorption limited in our model-
ing will be met by restricting consideration to cases where
Wads þ Wdes g Wdiff. In our perturbed hydrodynamic treat-
ment, we incorporate the expression 8 into the general form
eq 5 for JK = JK(ph).
The steady-state of our model has a constant particle con-

centration, X(x) = Xeq =Wads/(WadsþWdes). Thus, for the case

of a single-file system treated above, the steady-state diffusion fluxes
have the form

JKðhÞ f 0, JKðMFÞ f �DXð1� XeqÞDKðxÞ=Dx,
and JKðphÞ f �DtrðXeqÞDKðxÞ=Dx ð9Þ

as X(x) f Xeq (constant). In the hydrodynamic treatment, this
result implies that the pore is populated only by the product B if
all sites are catalytic; the pore can have nontrivial frozen
concentration distributions in regions with no catalytic sites.
These artificial features are erased in the perturbed hydrody-
namic treatment. One anticipates that the mean-field treatment
results in artificially large diffusion fluxes in the steady-state.
As noted above, we will compare the predictions of discrete

versions of various RDE with results of KMC simulation for both
transient and steady-state behavior. To this end, one must
implement a natural discrete version of the diffusion fluxes. For
the MF approximation, this is automatically provided from the
master equations, and for other cases we utilize choices described
elsewhere.22

4. CONVERSION REACTIONS: KMC AND ANALYTIC
RESULTS

4A. All Sites Catalytic (AfB). Here, we highlight the key
features of steady-state behavior for our single-file AfB conver-
sion reaction model, the shortcomings of popular mean-field
treatments in describing this behavior, and the potentially far
higher reactivity of systems with no single-file constraint. Our
parameter choice isWads = 0.8,Wdes = 0.2 (so Xeq = 0.8),Wdiff =
1, with fairly low reaction rate Wrx = Wrx(A) = 0.001 which will
amplify the above differences, for a pore of length L = 100. To
analyze behavior, it is instructive to introduce the concept of a
penetration depth, Lp, for reactant A. In the steady-state, one
typically finds a roughly exponential decay of the concentration
ÆAnæ ∼ exp(�n/Lp) into the pore for n , L/2, with possible
deviations for the first few n = 1,2,... sites.20,22 Determination of
Lp allows an assessment of steady-state reactivity since RBtot ∼
Wrx(A) Lp. Figure 2a shows steady-state concentration profiles
for single-file diffusion noting that ÆXnæ = ÆAnæþ ÆBnæ = Xeq = 0.8
for all n. The small penetration for the exact KMC results
(thickest line) with Lp(KMC) ≈ 2.6 reflects single-file effects
where the center of the pore is devoid of reactant and thus does
not contribute to RBtot. The MF prediction, Lp(MF) ≈ 14.1,
greatly overestimates Lp because of artificial intermixing of A and

Figure 2. Steady-state concentration profiles for the AfB reaction for
all sites catalytic:Wads = 0.8,Wdes = 0.2,Wdiff = 1,Wrx(A) = 0.001, and
L = 100. (a) Single-file diffusion: KMC, MF, and perturbed hydro-
dynamic results are shown as thick, moderate, and thin lines, respec-
tively. (b) Unhindered passing (exact results). Solid blue lines ÆAnæ;
dashed red lines ÆBnæ.
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B, and the pair approximation (not shown) does only slightly
better with Lp(pair) ≈ 9.3. The hydrodynamic treatment pre-
dicts essentially no penetration of the pore, and the perturbed
hydrodynamic treatment does only slightly better with Lp(ph)≈
1.6. None of these analytic treatments reliably captures beha-
vior near the pore ends which is controlled by fluctuations in
adsorption�desorption processes (a feature completely neglec-
ted in the standard hydrodynamic treatment).
To further understand the shortcomings of analytic theories,

we note that the MF, pair, and also higher-order triplet approx-
imations, and so forth,51 naturally predict a functional depen-
dence Lp ∼ (Wrx/Wdiff)

�1/2 for Wrx/Wdiff ,1. The perturbed
hydrodynamic treatment actually predicts the same dependence,
but with a much smaller prefactor. In contrast, simulation
analysis (details not shown) indicates distinct non-MF behavior,
Lp ∼ (Wrx/Wdiff)

�n for Wrx/Wdiff , 1, where n ≈ 1/3.52

Finally, we contrast single-file behavior with that for unhin-
dered passing of A and B which can be determined analytically
using the exact form of the fluxes JK

n>nþ1 described in Sec.2B.
Figure 2b reveals a far greater penetration of reactant, A, into the
pore in this casewithLp≈ 31.This feature and the associated higher
reactivity are expected given the more facile diffusive transport.24

4B. All Sites Catalytic (AfBfC). In Figure 3, we show the
time-evolution toward the steady-state for a pore of length L = 25,
for the single-file AfBfC sequential conversion reaction where
all sites are catalytic, Wads = 0.2, and all species have the same
hopping and desorption rates, Wdes = 0.8, and Wdiff = 1. We
choose Wrx(A) = 0.4 and Wrx(B) = 0.2 low enough to ensure a
significant population of A and B in the pore, but high enough so
that center of pore is exclusively populated by C. Note that
steady-state profiles for A and B are achieved quickly, but
subsequent filling of the pore center (essentially just by C)
occurs on a slower time scale. The steady-state has ÆAnæþ ÆBnæþ
ÆCnæ = Xeq = 0.2 for all n, but the hydrodynamic treatment would
incorrectly predict that all interior sites are populated only by C
with ÆCnæ = 0.2. The perturbed hydrodynamic treatment is closer
to the KMC results, but cannot correctly predict the extent of
penetration of A and B into the pore. The mean-field and pair
approximations capture the exact KMC behavior quite well in this
case, but only because all rate parameters have similar magnitude.
Next, we consider transient behavior associated with filling of a

very long (semi-infinite) pore for the single-file AfBfC reaction
with all sites catalytic and the above parameters. Recall that the
total concentration satisfies a standard discrete diffusion equa-
tion which reduces to the conventional continuum equation in
the hydrodynamic regime. Thus, total concentration profiles
collapse onto a single curve for increasing t after rescaling the

n-axis by (Wdifft)
1/2. However, to achieve nontrivial scaling

species profiles with significant populations of all species inside
the pore, it is necessary to reduce the reaction rates as time is
increased so that Wrx(K) 3 t remains constant for all K (see ref
22). More precisely, we find scaling solutions for the individual
species concentrations of the form

KnðtÞh i � XeqF
Kðn=ðWdiff tÞ1=2,W rxðAÞt,W rxðBÞtÞ,
for K ¼ A, B, and C ð10Þ

where FA(y,u,w) þ FB(y,u,w) þ FC(y,u,w) = F(y) = erfc(y/2).
Here, erfc is the complementary error function and corresponds
to the scaling solution for the classic nonreactive diffusion
problem for a semi-infinite system.53 Substitution of eq 12 into
the hydrodynamic reaction-diffusion eqs 3a�3b consistently
yields a closed coupled set of partial differential equations for
the FK(y,u,w) (cf. ref 22).
The observations above on fluctuation effects suggest the

following. (i) The MF and pair approximations should capture
fluctuation-dominated behavior better for shorter t when most
particles are close to the pore opening. (ii) The hydrodynamic
treatment should better describe behavior for longer t where
concentration profiles are smooth and broad. Indeed, this is the
case as shown in Figure 4 whereWads = 0.2,Wdes = 0.8,Wdiff = 1,
and Wrx(B) = 0.5Wrx(A) with fixed Wrx(A) 3 t = 4. The peaks in
ÆBnæ (ÆCnæ) of around 0.05 (0.03) in the MF and pair approx-
imations match KMC results for smaller t (largerWrx), but these
values persist for longer t. In contrast, the peak in ÆBnæ (ÆCnæ) in
the hydrodynamic treatment increases to about 0.09 (0.07) in
good agreement with KMC results for longer t (smaller Wrx).
4C. Peripheral Sites Catalytic (AfB).We consider behavior

for the AfB reaction for situations where contiguous strings of
sites at each end of the pore are catalytic, but not those in the
center. This type of distribution might result when catalytic sites
are created by grafting after formation of a mesoporous material,
in contrast to a co-condensation process.3 An example of the
results of KMC simulations for evolution to the steady-state is
shown in Figure 5. The parameter choice isWads = 0.8,Wdes = 0.2
(so Xeq = 0.8),Wdiff = 1, andWrx = 0.001, for a pore of length L =
100 (as in Sec.4A) with just 20 catalytic sites at each end.
Characterization of behavior is naturally divided into distinct

regimes. First, in the pore-filling regime, some A successfully “runs
the gauntlet” avoiding reaction in the peripheral catalytic regions
and diffuses into the central noncatalytic region (Figure 5a).
Second, after pore filling where ÆXnæ ∼ Xeq ∼ constant, a meta-
stable regime persists for ∼103�104 time units. In this regime,
there is a peak in the quasi-static concentration of A (i.e., a “blob”

Figure 3. Concentration profiles for the AfBfC reaction for all sites catalytic:Wads = 0.2,Wdes = 0.8,Wdiff = 1,Wrx(A) = 0.4,Wrx(B) = 0.2, and L = 25.
Solid blue lines ÆAnæ; short-dashed green ÆBnæ; short-dashed red ÆCnæ; dotted black ÆXnæ = ÆAnæ þÆBnæ þ ÆCnæ. (a) KMC simulation; (b) perturbed
hydrodynamic treatment; (c) MF and (d) pair approximations. t = 100, 200, 300, and 400 where ÆXnæ and ÆCnæ increase with t.
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of A) in the center of the pore. Third and finally, there is a slow
relaxation regime, where the population of A in the center of the
pore decreases leading to the true steady-state where the pore
center is almost devoid of A by t ∼ 106 (Figure 5b). In fact, the
final steady-state is very similar to that for a pore of length L = 100
with all sites reactive in Sec.4A (cf. Figure 2).
Figure 6 compares the KMC simulation results with predic-

tions of analytic treatments for a finite time corresponding to the
end of the pore-filling regime. The standard hydrodynamic
treatment reasonably describes the concentration profile of the
central A-blob in the KMC simulations, but evolves to a steady-
state close to the profile shown. This “artificial” steady-state
(which corresponds to the metastable state in the actual model),
and a slight difference from KMC profile shape, derive from the
neglect of fluctuations. In contrast, the MF and pair approxima-
tions (which incorporate artificially enhanced intermixing of A

and B) fail completely to predict a significant peak in the concen-
tration of A in central region. The pair approximation prediction
(incorporating a somewhat better description of diffusion) is
slightly closer to exact behavior. Significantly, the perturbed
hydrodynamic treatment describes almost perfectly the shape of
the A-profile in the noncatalytic pore center. Furthermore, this
treatment eliminates the artificial steady-state of the standard
hydrodynamic treatment and effectively describes evolution of
concentration profiles in all three regimes (Figure 5c�d). The
only shortcoming is in the description of concentration profiles
near the pore ends (analogous to that noted in Sec.4A).
Finally, we describe in more detail the nature of fluctuation-

dominated evolution in the last slow relaxation regime. The “blob”
of A formed in the central noncatalytic region during pore filling
is not frozen, but undergoes anomalous diffusion because of
fluctuations allowing it to reach the peripheral catalytic regions.
Eventually, essentially all of the A in this blob will be converted to
B after a number of “collisions” with the catalytic regions. See
Figure 7 for snapshots of this behavior from KMC simulations.

5. POLYMERIZATION REACTIONS: SYSTEMS AND
MODELS

5A. Aþ AnfAnþ1 Polymerization Mechanism.Our model-
ing is motivated by studies of the formation of PPB within Cu2þ-
functionalized MSNs.34 In this example, A denotes the mono-
mer, 1,4-diethynybenzene, for PPB formation and has a length of
∼1 nm. In the experiments, the pore length was ∼200 nm and
diameter was ∼2 nm. This catalyst material has a high loading of
approximately 1 catalytic group per 2 nm2 of pore surface.34,54

MALDI mass spectroscopy measurements indicated that the aver-
age size of PPB oligomers corresponded to about 23 phenylene
units (see ref 34, Supporting Information). 13C solid-state NMR
studies showed that these oligomers formed within and clogged the
pores. Pore clogging is likely a general trend for polymerization in
MSNs. Longer chains, composed of several hundred rings, were
produced in MCM-41 materials during polymerization of aniline.35

Another study reported an almost complete (up to 75%) filling of
MCM-41 pore volumes with polymerized alkanes.37

Our modeling for the Aþ AnfAnþ1 polymerization mechan-
ism assumes a single-file (no passing) constraint for monomers
and polymers inside the pore. The pore is represented by a linear
lattice with lattice constant corresponding to the monomer length
and pore length L = 200. Monomers reside at lattice sites, and
polymers form on contiguous strings of occupied sites. Certain

Figure 4. Scaled concentration profiles near the end of a semi-infinite pore for the AfBfC reaction with for all sites catalytic during pore filling:Wads =
0.2,Wdes = 0.8,Wdiff = 1,Wrx(B) = 0.5Wrx(A) with fixedWrx(A) 3 t = 4. (a) KMC forWrx(A) = 0.01, 0.0001, 0.000001. (b) hydrodynamic, (c) MF, and
(d) pair approximations forWrx(A) = 0.1, 0.01, and 0.001. Solid blue lines ÆAnæ; short-dashed green ÆBnæ; short-dashed red ÆCnæ; dotted black ÆXnæ (an
erfc curve). B and C profiles increase (A decreases) with t.

Figure 5. Complete evolution of species concentrations for the AfB
reaction:Wads = 0.8,Wdes = 0.2,Wdiff = 1, andWrx = 0.001, and L = 100
with 20 catalytic sites at each end. Solid blue lines ÆAnæ; dashed red ÆBnæ.
Top row: (a,b) KMC results. Bottom row: (c,d) perturbed hydrody-
namic treatment. Left column: (a,c) pore-filling regime for t = 1, 5, 10,
20, 40, 60 (�102) where ÆA50æ grows. Right column: (b,d) late-stage
evolution for t = 1, 5, 10, 20, 40, 60 (�104) where ÆA50æ decreases. Black
dotted arrows: increasing t.
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sites within the pore are designated as catalytic, and dimerization
(Aþ AfA2) as well as polymer growth (Aþ An>1fAnþ1) and
aggregation (An>1 þ Am>1fAnþm) can occur only at these sites.
The specific ingredients of the model (see Figure 8a) are as
follows: (i) Monomer adsorption or input at rate xin from the
exterior of the pore to (unoccupied) end sites within the pore (ii)
Monomer hopping to NN empty sites at rate hm, including the
possibility of hopping out of the pore. (iii)Diffusion of polymers of
length l (measured in monomers or sites) by shifting the entire
chain one site to the left or right with hop rate h(l) = hm/l

R in
each direction. (iv) Partial and complete extrusion of polymers via
the same unbiased diffusion process as described above. How-
ever, once a linear polymer is completely extruded, it cannot
return to the pore. (v) Polymerization at rate k at catalytic sites via
processes described above where the end of the oligomermust be
aligned with the catalytic site.
In our modeling, we will choose the monomer hop rate as hm =

1 (which sets the time scale), the monomer input rate as xin = 0.1,

and the scaling exponent for the size-dependence of polymer
diffusivity in the range R = 2�3. The loading of catalytic sites
can be characterized in terms of a mean separation, Lc, between
such sites. Two special regimes are: (a)Maximal catalyst loading
(Lc = 1) corresponding to the PPB experiments described above,
and “small” reaction rate ke 1. In this work, we will consider this
previously unexplored regimewith k, 1, that is, reaction-limited
kinetics. (b) Low catalyst loading (Lc g10) and instantaneous
reaction (k = ¥) at catalytic sites. This case of diffusion-limited
reaction kinetics has been analyzed previously,32,33,54 and is not
discussed further here.
Dimerization A þ AfA2 and growth A þ AnfAnþ1 are

particularly sensitive to the monomer density within the pore.
Without reaction, the monomer concentration (per site) in the
pore would increase to a uniform maximal value of Xeq = xin/
(xinþ h0) (≈0.1). Polymerization kinetics will clearly depend on
the time to reach such densities relative to the characteristic time
for reaction, τreact � 1/k. Thus, it is instructive to introduce a
filling time, τfill = τfill(p), for the concentration at the center of the
pore to reach some fraction, p, of its maximal value in the absence
of reaction. Then, it follows that

L � cp½hmτfillðpÞ�1=2, where c0:5 � 3:23,

c0:8 � 2:30, etc: ð11Þ

Figure 6. Behavior at the end of the pore-filling regime t≈ 6000 for the AfB reaction:Wads = 0.8,Wdes = 0.2,Wdiff = 1,Wrx = 0.001, and L= 100 with 20
peripheral catalytic sites. Solid blue lines ÆAnæ; dashed red lines ÆBnæ. A in the pore center “ran the gauntlet” past catalytic regions. (a) KMC; (b) perturbed
hydrodynamic; (c) hydrodynamic treatments; (d) MF (thicker lines), pair (thinner lines) approximations.

Figure 7. Sequence of KMC configurations (Δt = 3000) for late-stage
evolution in a pore of length L = 50 with 10 catalytic sites (gray) on each
end. Dark blue circles are A. Lighter red circles are B. Parameters:Wads =
0.9,Wdes = 0.1,Wdiff = 1, andWrx = 0.0005. Higher Xeq = 0.9 makes the
A-blob more visible.

Figure 8. Schematics for (a) Aþ Anf Anþ1; and (b) Sonagashira-type
polymerization mechanisms. Monomers A (B) are blue (green) circles.
Processes illustrated include: dimerization [Aþ AfA2 for (a), and Aþ
BfAB for (b)], growth [A þ An>1 fAnþ1 for (a), and A þ BAB..f
ABAB.. for (b)], and aggregation [A4þA3fA7 for (a), and BABA þ
BABfBABABAB for (b)].
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For our model (L = 200, hm = 1), one has that τfill(0.5) = 3.8 �
103 and τfill(0.8) ≈ 7.6 � 103.
5B. Sonagishira-Type Polymerization Mechanism.We will

also briefly analyze the kinetics of a Sonogashira-type polymer-
ization reaction. Our analysis is motivated by experiments38,55

where a monomer A (1,4-diethylnylbenzene) and a monomer B
(2,5-diakoxy 1,4-diiodobenzene) combine to form an AB-typed
poly(phenylene ethynylene) (PPE) inside Pd(II)-functionalized
mesoporous silica. Again, the pore length was ∼200 nm and
diameter was ∼2 nm. Our modeling assumes a single-file (no
passing) constraint for monomers and polymers inside the pore.
Again monomers will reside on single sites of a linear lattice with
lattice constant∼1 nm (the monomer length), and polymers will
reside on contiguous strings of occupied sites. The pore length is
L = 200 sites. Certain sites within the pore are designated as
catalytic. Reaction of adjacent A-B units occurs at catalytic sites
within the pore, but not of adjacent A-A or B-B units. This A-B
reaction can involve twomonomers (AþBfABandBþAfBA),
a monomer and a polymer (e.g., A þ BABA..fABABA..), or
polymer�polymer aggregation (e.g., ..BABþABA..f..BABABA..).
The ingredients of the model are as for the simpler mechanism

Aþ AnfAnþ1, except that there can be separate input rates and
hop rates for A and B. However, in our modeling, we choose a
common input rate xin = 0.1, and hop rate hm = 1 (which sets the
time scale). The hop rate (in each direction) for polymers of
length l again satisfies h(l) = hm/l

R independent of the polymer
termination, where we choose R = 2�3. We consider only the
case of maximal catalyst loading, Lc = 1, which is applicable in the
experiments,38 and “small” reaction rate ke 1. See Figure 8b for a
schematic.
Contrasting the A þ AnfAnþ1 mechanism where significant

polymerization occurs, Sonagashira reactions could potentially
evolve quite differently: the pore can be populated by many small
oligomers and monomers which cannot react to undergo further
polymerization when adjacent end units on neighboring oligo-
mers are of the same type. Examples of such “trapped” species are
shown in Figure 8b. Thus, one might expect inefficient polym-
erization for this Sonagashira mechanism in single-file systems.

6. POLYMERIZATION REACTIONS: GROWTH REGIMES
AND KMC RESULTS

6A. Aþ AnfAnþ1 Polymerization Mechanism. The follow-
ing results were obtained from our single-file diffusion model
with monomer input rate xin = 0.1, monomer hop rate hm = 1,
pore length L = 200, andmaximal catalyst loading, Lc = 1. For our
polymerization model, we can identify several reaction rate
regimes based on distinct behavior during the initial stages of
polymerization. These regimes, illustrated by KMC results in
Figure 9, can be characterized as follows:
Case I: large k: initial rapid formation of a single larger

polymer at each end of the pore.
Case II: moderate k (Figure 9a): initial formation of multiple

polymers near the pore end during pore filling, that
is, while there is a significant gradient in monomer
concentration. Subsequent development of a domi-
nant larger polymer near the pore opening occurs
mainly by aggregation of smaller polymers. Note
that the degree of polymerization in Figure 9a at
time t = 105 corresponds roughly to the average
length of PPB polymers relative to the pore size in
our earlier experimental study.34

Case III: low k (Figure 9b): initial formation of multiple
polymers throughout the pore after pore filling
when the monomer density is fairly uniform. Sub-
sequent development of a dominant larger polymer
still near the pore opening occurs primarily by
growth toward the opening (after an earlier aggre-
gation stage).

Case IV: very low k (Figure 9c): initial formation of multiple
polymers throughout the pore after pore filling.
Subsequent formation of a single larger polymer
near the pore center occurs by aggregation of
smaller polymers.

The range of k values for these different cases depends on the
exponent R for the size scaling of polymer diffusivity. Cases I
through IV correspond to k g 0.1, k ≈ 0.01, k ≈ 0.001, and

Figure 9. KMC simulation snapshots of A þ AnfAnþ1 polymerization for R = 2 and L = 200: (a) k = 0.01 (case II); (b) k = 0.001 (case III);
(c) k = 0.0001 (case IV). Times t = 104�107 are shown. Polymers are in blue.
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ke 0.0001, respectively, for R = 2, and to kg 0.1, k≈ 0.01, k≈
0.001�0.0001, and k e 0.00001, respectively, for R = 3.
The above characterization describes only the initial behavior

in each reaction rate regime. For Cases I�III, after the formation
of a dominant larger polymer within the pore but near each end,
there is a transition to a regime where this polymer is partly
extruded from the pore opening. In this regime, the center of the
pore between the two partly extruded polymers becomes de-
nuded of monomers. In contrast for Case IV, partial extrusion of
a single polymer out of both ends of the pore occurs when the
polymer has grown to exceed the length of the pore. For either
partial extrusion regime, further growth requires that an extruded
end of the polymer returns to just within the pore opening. As a result,
this regime of partial extrusion exhibits distinctive growth
kinetics for the average polymer length, lav ∼ (hmt)

1/(Rþ2), and
non-Markovian growth kinetics for the polymer length distribu-
tion. See Sec.7 for details.
Now, we provide an analytic treatment of the initial polymer

growth for Cases II and III, which is supported by KMC results
in Figure 10. First, consider the onset of the formation ofmultiple
polymers within some region of pore. After this onset at time t≈
t0, further input of monomers to this region is effectively blocked
by the polymer or oligomer closest to the pore end, so one has a
local mass conservation tied to the monomer concentration X =
X0 e Xeq at t ≈ t0. The values of t0, X0, and the location of this
region will depend on the values of k and R. If nav(t) denotes the
density per site of polymers (including monomers) within this
region of the pore, then for reaction-limited polymerization
kinetics,

dnav=dt ¼ � kðnavÞ2 with nav � X0 at t � t0 ð12Þ
Thus, one has that

navðtÞ ∼ X0=½1þ X0kðt � t0Þ� and

lavðtÞ ∼ X0=nav ∼ 1þ X0kðt � t0Þ, for t > t0 ð13Þ
Using eq 13 for ke 0.001 with t0∼ τfill(0.5)∼ 4� 103 and X0∼
0.1 effectively captures the basic features of initial polymer
growth. For larger k, polymerization starts earlier so the effective
t0 and X0 are smaller.
The above analysis only applies up until a time t ≈ t1 ≈ L/

(2k) = 100/kwhere the polymer density drops to a value correspond-
ing to about one polymer at each end of the pore. After this time,

one has essentially one larger polymer at each end of the pore,
and its growth is fed by an influx of monomers creating a local
monomer density X ∼ Xeq at the end of the pore. This reaction-
limited growth behavior is captured by lav(t) ≈ Xeqk(t � t1) þ
lav(t1) for t1 < t < tex, where tex corresponds to the onset of partial
extrusion. For t > tex, behavior crosses over to the partial
extrusion regime described above where lav(t) ∼ (hmt)

1/(Rþ2).
Finally, we briefly discuss the initial evolution in Case IV.

Initial polymerization occurs uniformly throughout the pore after
pore filling. However, the reaction rate is so low that there is a
tendency for the smaller polymers formed closer to the ends of
the pore to be extruded before they undergo significant growth
and aggregation. This leaves a distribution of polymers closer to
the pore center which aggregate into a single larger polymer. The
growth kinetics in this initial stage is similar to Cases II�III,
except that the increase in average polymer length is somewhat
impeded by the loss of polymers from extrusion. However, once a
single larger polymer has formed near the center of the pore at
time t = t1, say, it grows by aggregation of monomers with both
ends, thus onemight anticipate that lav(t)≈ 2Xeqk(t-t1)þ lav(t1).
This regime will continue until lav(t) ≈ L (the polymer length
roughly matches the pore length). At that stage, one enters a
regime of partial extrusion discussed further in Sec.7.
6B. Sonagishira-Type Polymerization Mechanism. As

noted in Sec.5B, Sonagashira-type polymerization can be inhib-
ited if the pore is populated by many small oligomers, where
adjacent end units on neighboring oligomers are of the same
type. However, the above analysis of the A þ AnfAnþ1 mecha-
nism suggests that such inhibition might be avoided by early
formation of a dominant larger polymer near each end of the
pore. Then, growth of this larger polymer either within the pore
or after partial extrusion can occur by aggregation of monomers
of alternating type which diffuse into the pore opening near the
end of the polymer. The growth kinetics in this partial extrusion
regime should be similar to that for the simpler A þ AnfAnþ1

mechanismwhere the average polymer length increases like lav(t)∼
(hmt)

1/(Rþ2). However, for the Sonagashira mechanism, there
will invariably be small oligomers trapped in the center of the pore
between the two longer polymers. These trapped oligomers will
block the aggregation of the two longer polymers, and may also
ultimately inhibit their growth. Figure 11 illustrates the behavior
described above for R = 2 and also reveals the existence of distinct
reaction rate regimes analogous to the Aþ AnfAnþ1 mechanism.

7. POLYMERIZATION REACTIONS: PARTIAL EXTRU-
SION REGIME

First, consider the A þ AnfAnþ1 polymerization mechanism
in the partial extrusion regime for a reaction rate corresponding
to Cases I�III. In all these cases, a dominant larger polymer
forms near each end of the pore which after reaching a length l∼
l0 becomes partly extruded from one end of the pore. Then,
further growth to lengths l = l0 þ Δl requires that the extruded
end of polymer returns to the interior of the pore. The extruded
end of the polymer essentially undergoes a 1D random walk for
which there are two possibilities. (i) With probability, Pex(l) ≈
1/l the polymer end travels a distance l from the end of the pore
in which case the polymer is completely extruded,33 so then the
length of the polymer in the pore is reduced by δl≈�l. (ii) With
probability Pret(l) = 1� Pex(l), the polymer end returns to within
the pore and typically grows by an amount Æδl æ = b > þ1.33

Comparison (i) and (ii) indicates that overall polymer growth

Figure 10. KMC simulation results for the average polymer length, lav
(measured in monomers) for Aþ AnfAnþ1 polymerization with R = 2
and L = 200, for various values of reaction rate k = 10�4 to 1 (shown).
The dashed line has a slope 1/(Rþ 2) = 1/4 (reflecting temporal scaling
for partial extrusion).
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dominates for polymers remaining in the pore. In fact, polymer
growth can be captured by simplified modeling which neglects
the possibility of complete extrusion.33

For a polymer of length l whose end has just left the pore
opening, the typical number of hops, n, to return to the pore is
given by Æn æ≈ l.33,56 Thus, as the polymer grows and l∼Δlf¥,
the mean number of hops to return diverges, and yet Pret(l)f 1.
This dichotomy between slow return and certain return as lf¥
derives from the unusual statistics of 1D random walks.57 It
reflects the existence of a long time-tail in the “return time
distribution”, Fret(n) ∼ (2π)�1/2 n�3/2, for larger n (, l2).33,57

The quantity Fret(n) also encodes the statistics for multiple
returns from which one can show that the mean number of
returns in n hops satisfiesM(n) = (2n/π)1/2 for large n.33,57 From
this result, we can deduce the corresponding polymer growth
kinetics since Δl ≈ M(n)b. First, note that the number of hops
taken by a growing polymer from the time of partial extrusion, tex,
to the current time, t, is roughly given by n =

R
tex<t

0<t dt0 h(l = l0þ
Δl(t0)). Thus, it follows that33

ΔlðtÞ � MðnÞb

� ð2=πÞ1=2b
Z
tex < t0 < t

dt0hðl ¼ l0 þΔlðt0ÞÞ
" #1=2

ð14Þ

Integrating the differential form of this identity yields the
complete evolution of Δl(t) for t > tex,

58 in particular demon-
strating the previously indicated asymptotic behavior

lavðtÞ ∼ ΔlðtÞ ∼ ½π�1ðRþ 2Þb2hmt�1=ðR þ 2Þ, for Δl. l0

ð15Þ
A simple Markovian rate equation approach, exploiting the

feature that the rate of return of the end of the polymer to the
pore scales like l�1 h(l), can also recover eq 15.32,33 However, this
Markovian treatment completely fails to describe the behavior of
the length distribution,Nl, of partially extruded polymers. This is
a consequence of the presence of long time-tails in the return
time distribution. However, the appropriate generalized Gamma
distribution form

Nl � ðlavÞ�1ðl=lavÞR=2 exp½ � bðRÞðl=lavÞR þ 2� ð16Þ

together with eq 15 for lav can be obtained from Fret(n) using
CTRW theory.33

Next, we consider the partial extrusion regime for the A þ
AnfAnþ1 polymerization mechanism for case IV of very low
reaction rates. Now, the regime of partial extrusion corresponds
to the polymer typically extending beyond both ends of the pore.
This regime is initiated when the polymer length grows to be
comparable to the pore length, that is, when l ≈ L. Subsequent
growth of a polymer of length l = LþΔl requires that one of the
two extruded ends of the polymer returns inside the pore (at
which point growth occurs quickly given the low polymer
mobility). Thus, the extruded ends of the polymer essentially
undergo the same random walk over an interval of lengthΔl, and
growth corresponds to this walk reaching either end of the
interval. The first-passage time distribution for the number of
hops before the walk reaches the end of the interval develops a
long-time tail but only for large Δl. Thus, only for very large
twould growth become sensitive to this long-time tail, producing
simple asymptotic scaling like eq 15.

Finally, we briefly comment on polymer growth kinetics for
the Sonagashira-type mechanism in the regime of partial extrusion
from one end of the pore. As indicated in Sec.6B, the asymptotic
scaling behavior of the average polymer length and even the form
of the polymer length distribution, should be essentially the same
as for the A þ AnfAnþ1 mechanism discussed above. In both
cases, polymer growth requires a return of the end of the polymer
to within the pore, and it is the unusual statistics of the associated
1D random walk (i.e., a long time-tail in the return time distri-
bution) which control behavior.

8. SUMMARY AND CONCLUSIONS

There have been several previous experimental and theoretical
studies of catalytic conversion reactions in single-file systems pri-
marily motivated by catalysis in zeolites. A picture has emerged
for these systems of low reactivity localized near the pore open-
ings, but a comprehensive and reliable theoretical framework is
still lacking. Similarly, for conversion reactions in functionalized
MSNs with narrow pores where passing of reactants and products
can be severely constrained, there is also a need to provide a
sound theoretical andmodeling framework to enable appropriate
interpretation and detailed analysis of experiments. This need

Figure 11. KMC simulation snapshots of polymerization for a Sonagashira-typemechanism forR = 2 and L = 200. Examples are provided for (a) k = 0.1
(case II); and (b) k = 0.001 (case III). Times t = 105�107 are shown. A (B) type monomers are in blue (green).
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motivated the current contribution from which we can draw
several key observations regarding behavior in these systems:
(i) Dependence of reactivity on key rates, specifically rates for

reaction (Wrx) and diffusion (Wdiff). The penetration
depth, Lp, of reactant into the pore scales like Lp ∼
(Wrx/Wdiff)

�n forWrx,Wdiff, wheren≈ 1/3.This is distinct
from the prediction n = 1/2 of commonly acceptedmean-
field-type treatments. The scaling of Lp determines that of
the overall reactivity since Rtot ∼ Wrx Lp. As a conse-
quence an Arrhenius analysis of reactivity, Rtot ∼
exp[�E/(kBT)], for temperature T yields the Arrhenius
energy E = (1 � n)Erx þ nEdiff, where Erx (Ediff) is the
activation barrier for reaction (diffusion).

(ii) Fluctuation-dominated reactivity. The above scaling beha-
vior of Lp reflects the feature that reactivity in single-file
systems is controlled by fluctuations in adsorption�
desorption processes near the pore openings. This under-
lies the failure of both traditional mean-field (or related
higher-order pair, etc.) approximations, as well as the
standard or perturbed hydrodynamic treatments
introduced here.

(iii) Pore diameter dependence on reactivity. The overall reactiv-
ity increases dramatically upon relaxing the single-file
constraint to allow some degree of passing of reactants
and products (see Figure 2). This feature translates into a
strong increase of reactivity with increasing pore dia-
meter. We are currently analyzing such behavior for the
conversion of PNB to an aldol compound in the presence
of acetone in MSNs functionalized by catalytic amine
groups. Experimental data is available for effective pore
diameters ranging from 1.3 nm (very limited passing) to
about 2.5 nm (facile passing) where these values account
for both a reduction in diameter after functionalization by
catalytic sites, and a further reduction during reaction by
formation of a MSN-PNB adduct. A dramatic change
from low to high yield is observed increasing pore
diameter over this range.31

(iv) Dependence on distribution of catalytic sites. Functiona-
lizing pores with catalytic sites just in the peripheral
regions near the openings can result in concentration
profiles quite distinct from the case with the entire pore
being catalytic: some reactant can “run the gauntlet”
past catalytic end regions to form a robust long-lived
“blob” in the unreactive interior region (which even-
tually dissipates). However, in terms of reactivity, there
is little difference from the case where all sites are
catalytic, so functionalizing just near pore openings
suffices to obtain optimal reactivity.

(v) Predictive analytic formulations for spatiotemporal behavior.
Appropriate description of chemical diffusion is key in
these systems. Yet, there has been lack of recognition of
the existence of a hydrodynamic form eq 5 for diffusion
fluxes which captures aspects of single-file diffusion, and a
lack of utilization of this form. Use of eq 5 incorporating a
simple form for tracer diffusion, Dtr, in finite systems
captures almost perfectly the complex behavior described
in (iv). For the fluctuation-dominated steady-state reac-
tivity, preliminary analysis indicates the success of a
treatment based on eq 5, with a heuristic form for Dtr

varying from higher fluctuation-dominated values near
the pore ends to lower single-file-controlled values in the
pore interior.

We have considered here only the case of species-independent
hop rates and desorption rates, in the absence of interactions
between various species. Exploiting Onsager’s transport theory and
more general results for diffusion fluxes of the form of eq 5, one can
show that basic features of chemical diffusion carry over to more
general cases where species have unequal hop rates and interactions.
Again, fluctuations control aspects of evolution and steady-state
reactivity near pore openings, although some features of steady-state
behavior differ from the case of species-independent rates.

For catalytic polymerization reactions in single-file systems, even a
basic picture has been lacking for the spatiotemporal evolution of
the monomer and oligomer distribution during polymerization.
Our study has elucidated some universal features, including a
partial extrusion regime with distinctive growth kinetics, which
are common to different reaction mechanisms.
(i) Formation of a long polymer near each pore opening. For the

simplest polymerization mechanism (A þ AnfAnþ1)
applicable to studies of PPB formation in Cu2þ-functio-
nalized MSNs, there is a tendency for a broad range of
reaction rates for a single dominant large polymer to be
formed near each end of the pore.32�34 These low-
mobility sluggish polymers tend to clog the pore for long
times, a feature observed in the experiments on PPB
molecular wire formation,34 and also in other systems.35,37

(ii) Efficiency of the cross-coupling polymerization mechanisms
(A þ BfAB, BþAB..fBAB.., etc.). A natural expecta-
tion is that this mechanism will not be efficient for single-
file systems because of the formation of many small
oligomers within the pore which cannot react because
of neighboring ends being of the same type. An experi-
mental study of the Sonagashira reaction was performed
in Pd(II)-functionalizedMSNs which has a small effective
pore diameter, because of the large size of the catalytic
group.38 Thus, this system mimics a simple single-file
system given the large size of the PPE polymer, yet
substantial polymerization was observed. We proposed
that just as for the simpler A þ AnfAnþ1 mechanism, a
dominant larger polymer quickly forms near each end
after which efficient growth is sustained by adsorption of
monomers. This also leads to clogging. Our simulations
and experiments support this picture.55

(iii) Anomalous kinetics for the partial extrusion regime. After
formation of a long polymer within but near the pore
openings, the system enters a partial extrusion regime. In
this regime, further polymerization for single-file systems
requires return of the extruded end of the polymer to within
the pore. Thus, kinetics is sensitive to the unusual long time-
tail in the associated return time distribution. On the basis
of this observation, an appropriate non-Markovian
CTRW treatment can be developed to describe both the
unusual growth kinetics of the mean polymer length and
even the polymer length distribution.

(iv) Polymer length distributions. The above CTRW analysis
indicates that polymer length distributions for single-
file systems are much broader than expected from a
traditional Markovian rate equation prediction. Further-
more, they are expected to exhibit a generalized Gamma
distribution scaling form. Current studies of the pro-
ducts of Cu-catalyzed oxidative polymerization of 1,6-
dimethylphenol in fact reveal broad length distributions,
but more detailed comparison with model predictions is
required.59
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In summary, utilization of the theoretical and modeling
framework presented above for catalytic conversion and
polymerization reactions in single-file systems allows us to
address and elucidate numerous key issues listed above. When
applied to specific catalytic reactions in nanoporous systems,
this will enable more sophisticated analysis and interpretation
of experimental data.
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